首页 > 广州seo > TF-IDF算法在seo优化中的应用
2018
08-17

TF-IDF算法在seo优化中的应用

TF-IDF算法在文档检索方面有着不小的应用,尤其是在seo优化的过程中。适当合理的运用TF-IDF算法可以促使网站排名有着较好的表现。

TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

原理

TF-IDF实际上是:TF * IDF。主要思想是:如果某个词或短语在一篇文章中出现的频率高(即TF高),并且在其他文章中很少出现(即IDF高),则认为此词或者短语具有很好的类别区分能力,适合用来分类。

TF(Term Frequency,词频)表示一个给定词语t在一篇给定文档d中出现的频率。TF越高,则词语t对文档d来说越重要,TF越低,则词语t对文档d来说越不重要。那是否可以以TF作为文本相似度评价标准呢?答案是不行的,举个例子,常用的中文词语如“我”,“了”,“是”等,在给定的一篇中文文档中出现的频率是很高的,但这些中文词几乎在每篇文档中都具有非常高的词频,如果以TF作为文本相似度评价标准,那么几乎每篇文档都能被命中。

IDF(Inverse Document Frequency,逆向文件频率)的主要思想是:如果包含词语t的文档越少,则IDF越大,说明词语t在整个文档集层面上具有很好的类别区分能力。IDF说明了什么问题呢?还是举个例子,常用的中文词语如“我”,“了”,“是”等在每篇文档中几乎具有非常高的词频,那么对于整个文档集而言,这些词都是不重要的。对于整个文档集而言,评价词语重要性的标准就是IDF。

通俗理解TF-IDF就是:TF刻画了词语t对某篇文档的重要性,IDF刻画了词语t对整个文档集的重要性。

TF表达式

对于在某一文档 dj 里的词语 ti 来说,ti 的词频可表示为:

TF表达式

其中 ni,j 是词语 ti 在文档 dj 中的出现次数,分母则是在文件 dj 中所有词语的出现次数之和。

TF-IDF算法seo应用

上图网站就是很好的应用了TF-IDF算法,所以排位是非常稳定,权重到5.

IDF表达式

IDF是一个词语普遍重要性的度量,即一个词语对于整个语料库的重要性的度量。某一特定词语的IDF,可以由总文件数除以包含该词语的文件数,再将得到的商取对数得到:

IDF表达式

其中 |D| 是语料库中所有文档总数,分母是包含词语 ti 的所有文档数。

在向量空间模型里的应用

TF-IDF权重计算方法经常会和余弦相似性(cosine similarity)一同使用于向量空间模型中,用以判断两份文件之间的相似性。

TF-IDF的理论依据及不足

TFIDF算法是建立在这样一个假设之上的:对区别文档最有意义的词语应该是那些在文档中出现频率高,而在整个文档集合的其他文档中出现频率少的词语,所以如果特征空间坐标系取TF词频作为测度,就可以体现同类文本的特点。

另外考虑到单词区别不同类别的能力,TF-IDF法认为一个单词出现的文本频数越小,它区别不同类别文本的能力就越大。因此引入了逆文本频度IDF的概念,以TF和IDF的乘积作为特征空间坐标系的取值测度,并用它完成对权值TF的调整,调整权值的目的在于突出重要单词,抑制次要单词。

但是在本质上IDF是一种试图抑制噪声的加权,并且单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用,显然这并不是完全正确的。IDF的简单结构并不能有效地反映单词的重要程度和特征词的分布情况,使其无法很好地完成对权值调整的功能,所以TF-IDF法的精度并不是很高。如果计算网站排名,只能算是怎样提升网站信任度的一个方面而已。

此外,在TFIDF算法中并没有体现出单词的位置信息,对于Web文档而言,权重的计算方法应该体现出HTML的结构特征。特征词在不同的标记符中对文章内容的反映程度不同,其权重的计算方法也应不同。因此应该对于处于网页不同位置的特征词分别赋予不同的系数,然后乘以特征词的词频,以提高文本表示的效果。

如果你想知道更多的tf-idf运用在seo优化方面的知识可以联系我们。

捐 赠如果您觉得这篇文章有用处,请支持作者!鼓励作者写出更好更多的文章!

发表评论